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NATTONAL ADVISORY COMMITTEE FOR AERONAUTICS
TECHNICAL NOTE NO. 1336

THE ONE-DIMENSIONAL THEORY OF STEADY COMPRESSIBLE FLUID FLOW

IN DUCTS WITH FRICTION AND HEAT ADDITION

By Bruce L. Hicks, Donald J. Montgomery,
and Robert H. Wasserman

SUMMARY

Steady, diabatic (nonadiabatic), frictional, variable-area flow
of a compressible fluid is treated in differential form on the basis
of the one-dimensional approximstion: The basic equations are first
stated in terms of pressure, temperature, density, and velocity of
the fluild. Considerable simplification and unification of the squa-
tions is then achieved by choosing the square of the loual Mach num-
ber as one of the variables to describe the flow. - = 7

The transformed system of equations thus obtained 1a first
exemined with regard to the existence of a solution. It is shown
that, in general, a solution exists whose calculation requires know-
ledge only of the variation with position of any three of the
dependent variables of the system. The direction of change of the
flow variables can be obtained directly from the transformed egqua-
tions without integration. As examples of this avplication of the
equations, the direction of change of the flow variables 1s deter-
mined for two special flows. :

In the particular case when the local Mach number M =1, a
special condition must be satisfled by the flow if a solution is to
oxist. This condition restricte the Joint rate of variation of
heating, friction, and area at M = 1. PFurther analysis indicates
that when a solution exists at this point it is not necessarily
wiqus. R : -

Finglly it is shown that the physical rthenomenon of choking,
which is known to occur in certain simple flow situatians, is
related to resirictions imposed on the variables by the form of the
transformed equations. The phenomenon of choking is thus given a
more general significance in that the transformed equatlons apply
to a more general type of flow than has hitherto been treated.
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INTRODUCTION

The ratlional experimental development of Jet- and rocket-
propulsion power plants requires adegquate lknowledge of the theoreti-
cal mechanics of diabatic (nonadiabatic), frictional, varlable-area
compressible f£luid flow. The differential equatione describing this
typo of flow are well known. (See, for examplo, vreferences 1l{a),
1(b), 2, 3, and 4.) Their solution in the three-dimensional case,
however, is so difficult that soms simplification ie neceseary to
vermit development of the theory in a form immedliately useful for
technical applications. ' T T T

In the present paper, such simplificatlion is effected by gen-
eralizing the familiar "one-dimensional" or hydraulic treatment of
fluild flow to include the simultaneous effects of heat addition,
friction, and area change upon the flow of a compresaible fluid
rather than by attemnting to show that the one-dimensiomsl _approx-
imation follows from a simplification of the hydrodynamic and heat-
flow equations in their general three-dimensional form. The Zen-
eralization leads to one-dimensional equations in differential fomm,
which are ldentical with equations mprevicusly used by other inves-
tigators in less general cases.

Generalized conservation equations have been derived in appen-

dix A in order that a complete and loglcal basle for the theory may
be accessible to the reader, The remulting theory is intended to
serve ag a foundation in differentlal form for calculatzTon of all
types of mathematically continuous {that is, shocklecss) flow of par-
fect gases to which the one-dimensional approximation is applicable.
Thus the tlkeory applies dlrectly to compressible flow in combustion
chambers and also, with but slight modificatlon, to flow in turbines
and compressors (cf. refercnce 5) and nozzles and diffusers whsenever
the cne-dimensional approximatlon is valid.

In order to obtain convenlent and unified equations, the gen-
eralized relations are tranaformed by introducing a new basic
variable, the square of the local iach number M« = H. DPressure’
and temperature are chosen ag the additional basic variables; octher
relevant flow variables (for example, density, velocity, mass Tlow)
may be expressed in terms of Masch number sguared, pressure, and tem-
perature. Valuses of M from zero to infinity are considered; the
treatment ia therefore applicable to both subscnic and supersonic
flow.
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The variable M has been used throughout diifferential treat-
ments by Guklman (reference 6), Bailey (reference 7), and Nielsen
(referonce 8}, who investigated various examples of frictional
dlabatic compressible flow. A related variable
Z = (y-1)M2/[2 + (7-1)M27], which can be used alternatively with M,
will be discussed briefly in appendix B. Pertinent papers in vhich
M 1is rot used extensively are references 9 and 10, which report studies
of isothermal and of adlabatic frictional flow, respectﬂvely A
treatment of frictionless diabatic compressible flow carried out by
Szczenlowski (referencedll) is partly in differential form. The
same subJect, using the M language without differential formula- |
tion, is discussed in reference 12. The variable M has also been
employed to advantage in reference 5 for analysis of compressible
flow through turblnes and compressors, a related field that is not
specifically discussed 1n the present paner.

In the general case, the differential equations obtained in the
present treatment do not permit of formal integration: but being of .
the first order, they are particularly amenable to numerical methods.
A solution of the system is shown to exist, except possibly at sonic
velocity, and the behavior of the solution In this neighborhood is
investigated. From the djifferential equations useful information
may be easily obtalned about direction of changes in the flow vari-
ables. Choking is shown to be a consequence of a certain pronerty
of the equations.

THE ONE-DIMENSIONAL AFPROXTMATION
Basic Equations

The "one-dimensionel" steady-flow theory utilizes a model con-~
sisting of a perfect gas contained within a duct, across any section
of which the flow variables are constant. Only the component of
velocity normal to the section i1s consildered; body forces are neg-
lected, and heat, whether supplied by combustion, conversion of
frictional work, or conduction from the walls, is assumed to bhe
transferred instantaneously and completely but only transversely
throughout the cross section, which may be of variable area. Each
Tlow variable can thus be considered as a function of a single
parameter, say the distance along the axis of the tube, wience the
term "one dimensional."”
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The conventional variables — pressure, temperature, deusity,
and velocity in one-dimensional flow — are comnnected by four rola-
tions derivable from the first law of thermodynamics, the conserva-
tion of mass, the second law of motion, and the thermal equation of
state for a pexfect gas. . B

The " four relations are:

Conservation of energy cp dT + V&V = 4Q (1)
Conservation of mass a(pVA) = O (2)
Equation of motion : ~dp = pvavV + pdF (3)
Equation of state aA(p/ReT) = O (4)

The specific heat at constant nressure Cp and the gas constant R
do not vary in the flow. The symbols p, V, », and T, respec-
tively, stand for density, velocity, absolute static presssure, and
absolute static temperature. The pipe ereas, wiich may be variable,
is represented by A. Heat added per unit mass is indicated by Q,
and work per unit mess done ageinst friction by ¥. Consistent
units are used throughout. In equations (1) through (4) each vari-
abler is to be considered as a function of a single narameter, such
as the distance x along the tube considered positive in the direc- __
tion of flow; and, of course, the meaning of each differential du
ig then given dy

du = u'(x)dx

_ Equations (1) to (3) are customarily used without explicit
reco#énition cf their true meaning with regard toc the one-dimensional
approximation. The Interpretation of the quantity dF 1in particular
is often obscure. In order to provide a logical, unified basis for
the theory, equations (1) to (3) are derived in apmendix A; spocial
care 1ls talken to keen the dsrivations w1th1n the f“amework of the
one-dimensional approximation. . T

Apnlicability
The validity of the one-dimensional avproximation denends upon

the assumption of the unifermity of flow conditlons across a planec
normal to the direction of flow. ZExperience has shown that this
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assumption constitubtes an adequate approximation in many special

cases; in particular, wlth subsonlic turbulent flow in long wmipes _
wlthout separation, the reasonably flat veloclty profile permits

the use of equations derived on this basis. In cases involving
incomplete growth of boundary layer or where separation of flow occurs,
however, there is grave doubt as to the applicability of a one-
dimensional treatment. Although boundary-layer effects are somewhat
emenable to calculatlon, the occurrence of separation is difficult

or impossible to predict and the gquestion of apnlicability must usually
be determined by experiment or estimated by experience.

The one-dimensional approximation would not be valid if oblique
shocks occur in the flow. Nor can normal shocks, if treated as flow
discontinuities, be handled in the differential form of the present
approximation. If, however, in equations (1) and (3), d4Q and @F
are congsidered to depend upon the derivatives of T end V and if
heat and momentum transfer in the direction of flow is allowed, then
the equations for continuous normal shock (reference l(c), p. 219)
can be put in the form of equations (1) to (4).

In the development and use of equations (1) to (4) verious
approxlimations are made, such as neglecting the squares of velocity
components normal to the direction of flow, replacing the sgquars of
the cosine of the balf-angle by unity, and assuming the comstancy
of R and c¢p. In this paper no attempt is made to state under
what clrcumstances such approximations are suiltable.

TRANSFORMATION OF EQUATIONS
Change of Variables

A canonical form for equations (1) to (4) is obtained by taking
logarithmic derivatives and choosing as a variable the square of the
local Msch number

M2= N = V2 /yRT (5)

where « 1s the ratio of snecific heats. This choice to obtain
simplification of the equations is not unique; similar advantages
result with other dimensionless combinations of velocity squared and
a temperature, F¥or instance, some workers have used the ratioc of
dynamic temperature to total vemperature; 1n avdpendix B of ths -
present report are presented the canonicel differential equations

in terms of this variable.
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If equations (1), (2), (3), and (4) are divided by cpT,

p, and p/RPT, resmectively, there result—

ve av  ar  4q

"‘1)'.—"""""-[——::———
(r 7RT VT o
av dp dA
LY

2

pVA,

(6)

(7)

(8)

(9)

With use of equation (5) and the expression for dv/V obtained by

logarithmic difforentistion of equation (5) s

av  1/4N aT

—_— = _—t —

v 2\ N T/

and, upon elimination of dp/p, there are found

S +’-1 +(7'1)N]_d3 -8R s

2 N
2 T cPT
1 an ap 1l at dA
—_— g — - = — = w -—E g
z N D 2T A
YN N dp R 4T dF"d.u
2% p =zT R

where the dimensionless guantlities 46, do, and du have been

introduced to slmplify the followlng analysis.

T3

(10)

(11)

(12)

(13)
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Solution for Logarlthmic Differentials

If the determinant formed by the coefficlents of &¥/N, dp/p,
and dT/T in equavions (11), (12), and (13) is not identically zero,
the equatlons may be solved unlquely for these three diferentials.
As the determinant in question is proportionai to (1-¥), which vanishes
only for N = 1, the solution is obtained as follows:

aN/N = (1-8) " S (1 4 o) a6 + 2+ (y -1)N] ap +[2 +(r-1)N] aa\_, (14)
ap/p = (1) {- o - (1 a(r-1)N} au - 0w dm} © ()
ar/r = (1-n)"1 ‘_‘(l-yN) a8 - (7-1)N dp - (y-1)N {&a 1 (16)

J

It is also convenlent to record the differential expressions for
the density p and velocity V: ' '

dp/p - aT/T = (1-N)"1 (-d6 - dp - N da) (17)

(aN/N + aT/r) /2 = (l-—N)-l (46 + du + da) (18)

do/p

av/v

Application of Second Law of Thermodynamics

The first law of thermodynamics was used in the formulation of
the baslic equations; the second law of thermodynamics may be
employed to furnish additional information. The entropy differ-
ential dS for a perfect gas is given (cf. reference 13, p. 63) by

ds/c, = /T - [(7-1)/7] dp/p = @6 + [(7-1)/7] dp (19)
The second law of thermodynamics then states
0= ds/o, - dQ/cyT = [(_7-1),/7] au N (20)

The relation, according to equation (18), that
ds/cp = (d6 + du + da) - dp/fy -da
~ when used with equation (20), results in the inequalities
a6 = dS/cP =dp - dufy - Ao S dp -do .(21)
where d4BE- d6 + du + do.
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DISCUSSION OF EQUATIONS
Remarks on Integration of Equations

Equations (14), (15), and (16) can be rewritten as

N : 2 - N 2 ~-1)N
N! = e Coiks LI .g_ _iSZ,Elﬁ LA +<7,_2_ Al (22)
1-N CPT 1-N RT . 1-N A
t o . P 7N e P l+(7"l)N F' + _E_ _7_1! At 23
s 1-N GPT & 1-N RT 1-N A (23)
- - T -1)N
T 1l-yN T (y-1)N N (7-1) e (24)

oo [ t
Tetqog ¥ 13 = F*1TW %

where the primes indicate differentiation with respect te x. Thie
system clearly satisfies, except at N = 1, the conditions of the
fundamental existence theorem (see, for example, reference 14) when
Q, F, and A are differentlabls. Hence a solution cxlsts except
at sonlc veloclty and may be obtained Tformally when possible, and
by standard numerical methods otherwise, as soon as the functions
Q, F, and A (or their derivatives) arc specified. Morc gensr-
ally, the system may bo sclved in similar fashion for any three of
the varlables N, p, T, Q, F, and A as functions of x, when
the variation with =x of the other three 1s prescribed. Also 1t
may be noted that as all the foregoing variables are funchions of
one parameter, eny two may be considered as functions of each other
under suitable circumstances.

Dirsction of Change of Flow Variables

In practical as well as in theoretical work it 1s frequently
ugeful to be able ta determine the direction of change of flow
guantities with respect to heat addition, friction, or area varia-
tion without troubling to get quantitative information from inte-
grated forms, ZEquations (14) to (18) (or (22) to (24)) —ermit the
specification of signe of derivatives at any particuler point and
also throughout certain regions of flow. Thue equation (14) shows
that in subsonic flow the effect of positive 6', p', or o',
is to increase N, whereas for supersonic flow the e¢ffect is to
decrease N. When the derivatives have different signs, the nst
effect will depend upon the algebraic sum of the scparate con-
trivbutions. ‘ . o=
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As an example of the use of this technigue, suppose heat is
added to a fluid in & constant-area pipe, with negligible friction;
that is, ©'# 0, p' = o'= 0, Tt is easily seen from sgqua-
tions (14) to (18) that for the entire range of N from zero
to infinity

(1-N) aN/dQ Z © (25)
dp/aN S 0 (26)
(t-y¥)~L ar/an 2 0 (27)
dp/aN = 0 (28)

av/ay 2 o - .(29)

These resulis are given in reference 1l2. By use of the chain rule
for the derivative of a function of a function, the sign of the
derivative of any of the flow variables with respect to any of the
others may be obtained; thus, from equations (25) and (29) it is
clear that

(1) g = (0 = 2o (30)

As another example, conslder the flow in circular cylindrical
pipes with heat addition and with friction; that is, 6' = O,
p* £ 0, o' = 0. (See also related discussion in reference 8.)
Equation (14) will be used to determine the direction of change of
N with respect to x. If the heat addition ies only through the
wall, which is at temperature T, +the heat added per unit mass of
fluid in passing a distance dx along the tube is given by

PVA dQ = h (T -T) (xD dx) (33)

where D is the tube diameter, and h +the local surface-to-fluid
coefficient of heat transfer, in heat units transferred per unit
temperature difference, per unit area. (Cf. equation {2), refer-
ence 15, p. 135.) In conjunction with equation (11), equa&ion (31)
leads to

a9 =-38 BLEwn-11 xpax b [(m/m - 4 o=

cpT op PVRDP/4 op PVD

(32)
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The expression for frictional work done ie assumed to be given (cf.
reference 15, p. 119, equation (8)) by

£v2 ax

: (33)
2(D/4)

where f 1s ths Fanning friction factor. Prom eguations (13) and
(33) 1t follows that

_ &P 28N dax (34)
du_"ﬁ = ._q_.ﬁ._.... i

If Reynolde' analogy is valid, h may be replaced by cy pVE/2
(reference 15, p. 182, equation (1)), whence equation (lf) becomes

an/ax = [ N/(1-W) ] {(1+7N) [(me/r) - 1]+ [2r -1w) o8 loefp (35)

This equation may be used to determine the direction of change of

N with x, and hence of other flow gquentities, for various

ranges of N and of T./T. For values of (T4/T) <<l (meximum rate
of cooling), dN/dx is positive for values of

1> N> {-7 +J';'(—57_:_4—)_]/27(7-l) = 0.58

for ¢ = 1l.4; that 1s, the effects of friction in dncreasing tho

Machk number overbaslance the effects of the cold-walls in loworing

1t 1f L1 >M=uF> 0.76 for 7 = 1.4. If N> 1 then (dN/dx) <O,
and acceleration of frictional, supersonic flow by convective
cooling appears to bes impossible. Acceleration of frictlonless
superso?ic flow by cooling should, however, be possible (refor-

ence 12).

Behavior of Solution at Sonlc Veloclty

The differential equations (14) to (18) must be examined
as to behavior at the singular point N = 1. In order that the
logarithmic differentials may be defined at this point, it is neces-
sary that 4B =46 + du + da vanish sultably at N = 1; that is,

dg =48 + du + dx = O at N=1 (38)

because each logarithmic differential is proportional to dB/(1-N)
there. If 4B # O upstream of the end of the duct, N can equal
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1l only at the end of the duct. This gituation is illustrated by

the "choked" converglng nozzle and by the frictional dlabatic flow,
which is treated in the previous section. Equatlon (36) is formally
satisflied at the end of a duct where 46, du, and da may be
conslidered to vanish for all values of N.

Between the ends of a duct, however, df must always vanlsh
where N = 1. This condition shows that at N = 1 arbitrary varia-
tions of 46, du, and do are not possible. A specific illustra-
tion 1s the 1ldeal nozzle in which 46 = dp = 0; according to equa-
tion (36), da 18 then restricted to the valwe 0, which means
that the area has a stationary value at N = 1. This is the well-
known result that sonic velocity can be attained only in the throat
of an ideal nozzle in shockless flow. A quite similar treatment
applies for the cases where 46 and dp are the quantities to be
investigated. (See pertinent material in references 5 to 12.)
Condition (38), which was necessitated by the presence of the deter-
minant (1-N)/2 in equations (14) to (18) is thus seen to
provlide a unification of the treatment of <the flow behavior in the
neighborhood of sonic wvelocity. : _ -

Combination of the second law of ﬁhermodynamics with equa-
tion (36) also yields limitations on the behavior of the flow at
N = 1. According to equations (21) and (36), at sonic velocity

S as/ep T - do = dA/aA : (37)

These results may be stated In words to the effect that in converg-
ing or constant-area channels at N = 1, nelther the heat term

de = dQ/cPT nor the entropy term dS/cp can be positive. In
!diverging channels these two terms may be either positive or neg-
tative. If either d6 or du 1is everywhere ©, relation (21)
yields more detailed results. For example, If 46 & O then at

N =1, by equations (36) and (20)

dp = -da

[7/(7-1)] as/ep £ 0 (a6 =0, N =1)

Continuous flow with friction and without heat addition at sonlc

velocity cannot therefore occur in a converging channél (refer-
ence 7).
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A more complete treatment of the behavior of the flow when
N = 1 between the ends of the duct is obtained by considering
second-order terms. As N approaches unity, equation (14), which
mey be written

N'/N = {(1+7N)a' + [24(y-1)N] p' + [2+{y-1)N] o' }-/(l-N)
(where the prime indicates differentiation with respect to ),

takes the form 0/0. TFor the evaluation of this 1imit, L'Hdpital's
rule gives after some calculatlion 8

NO' = [ao'No' + (1+7) Bo"] /(“No')

where subscript o denoctes value of functlon at N = 1. The solu~-
tion for N,' 1is

No' = ‘ao'/2=*~/%eo'/2)2 - (1+7)Bo" (38)

The double-valuedness of the derivative at N = 1 will have impor-
tant conseguences in that a unique solution of the equations may
not be obtained when N = 1 along the flow path. In general, it
will be possible to contlnue the solution from N = 1 along elther
of two paths, depending on the choice of slign. In certain cases,
depending on the signas of 6,' and B$,", one sign will correspond
to contlnuatlom into subsonlc flow, the other into supersonilc;
otherwlse the two cholces willl correspond to different continuations
into flow of the same character. This result means that specifica-
tion of Inlitial conditions and of variation of 46, dp, end da
alone is not sufflcéint to Insure a unique solution 1f N becomes
unlty along the flow. In the event that the radlcand is zero, 1t 1s
posslble that only one solutlon is obtained; or it may happen that
some highexr derivative ls double-valued with resultling ambigulty of—
golution. The analysls for thls casse ls somewhat involved and will
not be continued here.

It 1s interesting to note that a less general problem of the
same nature has been presented by Lorenz (reference 16) and Prandtl
and Proell (reference 17). Some of this work is possibly more
accessible 1n reference 18.

The Phenomenon of Choking
The general equations (11), (12), and (13) impose restrictions

on the relatlons between the flow varlables and the heat, friction,
and area varilation. When these restrlctlons teke the form of upper
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or lower limits on mass flow, the assoclated phenomena are termed
"choking" processes. As an example, it is well known that the 1ldeal
nozzle has for given subsonic entry conditions a maximum mass flow
beyond which the discharge cannot be lncreased no matter how much
the exit pressure is lowered. Another case is "thermal choking,”
wherein the entrance Mach number and hence mass flow in dlabatic,
frictionless, constant-area flow is limited for given heat addition
despite indefinite reductions in outlet pressure (reference 12).

The nature of choking may be studled with the help of equa-
tion (22), which was derived simply from the basic equations. It
wlll be shown that unless heat, friction, and area varlatlion are
such that (1-N) +times the right-hand side of eguation (22)
changes from positive to negative es x increases, the Mach number
in the tube cannot become greater than 1 if the entrance veloclty
is subsonic and cannot become less than 1 if the entrance veloclty
is supersonic, provided that the flow varisbles remaln continuous.

For convenience, designate by ¥ +the factor (1-N) times the
right-hand side of eguation (22). The quantity Y 1s seen to con-
sist of a sum of terms in Q', F', and -A' multiplied by func-
tions of N +that are always positive. (In the event that only one
of the terms Q', F', and -~A' 1s not O, Y becomes merely the
derivative of the heat added, the frictional work, or the area,
multipllied by a simple function of the flow variables; then posi-
tive Y corresponds to the case of heat addition, friction, or a
converging duct.)

Suppose first that Y 1s always negative. Then if the flow
at the entrance section x; 1s subsonic, dN/dx = (1-N)Y<O, and
the Mach number decreases; 1f the entering flow 1s supersonic,
dN/dx = (1-N)Y >0, and the Mach number increases.

Suppose now that Y 1s always positive. Then, i1f the entering
flow at x; 1s subsonic, dN/dx = (1-N)Y >0, and the Mach number
increases. But N cannot increase past unity as x 1ncreases.

For suppose N =1 at X = X5 and 1s greater than 1 in the right-
hand neighborhood of xo (exclusive of xg); then dN/dx is nega-
tive in this neighborhood, because (1-N) is less than O and Y 1is
greater than O. Now N Is equal to unlty at x = X5, 1is contin-
uous, and has a negative derivative In the neighborhood mentioned.
Hence N 1s less than 1 in this nelghborhood, which contradicts

the assumption. Therefore N cannot be greater than 1 if Y is
always positive, N 1is continuous, and N(x;) is less than 1. In

general, no continuous solution exists for values of x > x5 1if ¥
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is always positive. This statement, and the foregoing proof, arve
valid even if N'(xo) does not exist. An analogous dcvelowmment
mey bo made for N(x3) groater than 1 with the conclusion that,
with Y positive and N continuous, N cannot be lese than 1.

If Y changes from positive to negative at x = x,, however,
the value of N may cross uvnity at that point, but if Y is ini-
tially negative, N goes away frum unity as previously shown and
can only turn toward uvunity if Y changss from negative to positive;
tbisg change must be wade at some value of N other than 1. Aftcr
Y has changed to positive, the situation reduces to the cése that
Y is always positlve, with tho N where Y changes sign now taken
. a8 the entrance N. '

It has been shown that up to some fixed point in the tube,
which can be either the exit or the point at which ¥ changes from
positive to negativey; N and therefore the Mach nmumber do not
become greater than 1 if the enteoring velocity is suvsonic nor lces
than 1 if the entering velcoity ia suwersonlc. Furthcrmore, if ¥
is pogitlve up to the point at which N is limited, the derivative
of N %Defore this point is always positive 1f the entoring flow is
subsonic and is always negative if thc ootering flow is supersonic,
Thus, for posltive Y and subsonic entrance veloolty the entrance
N cannot exceed some Limiting value less than 1L determined by the
particular Q, P, -A variation, for N is alwajs increasing
from its initlal wmlue and cannot exceed 1; and, by analogous con-
slderations for positive Y and suversonic sutrance velocity, N
cannot be less than some limiting velue grecater than 1. This
limitation 1s essentlally tho choking phonomenon.

The specific form this limitation takes is not easily stated

in the goncral case, bocsuse the cholce of which factors are to be

 held constant and of which variables are to be considered limited

dotermines tho particular form of the restrictiona. Numecrical
results for some-particular cases are given in referonce 12, among
others, to illustrate the nature of possible results. It is felt
that additional spoclal cases shculd be investigated before a thorough
study of the genoral case ig attempted.

Flight Propulsion Research Laboratory, .
National Advisory Committes for Aeronautics
Cleveland, Ohlo, February 24, 1947.
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APPENDIX A

DERTVATIONS OF THREE BASIC EQUATIONS
Conservation of Erergy -

. The first law of thermodynamics applies to energy changes
between two states of a system enclosed within a surface. Let the
gystem (fig. 1) be the Zas of mass Am +that 1s contained in the

X =0

S RS

¢
s ! ‘ \
Xa =y :
5,2 e Figure 1

initial state within the tube walls and the sections at x; and
Xy &nd in the final state within the tube walls and the sectlons

at €7 and Eg5; X, X3, and £; dre arbitrary, and £, 1s
determined by the condition that the mass between x; and &7
equal the mass between x, and £,. When m(x) is defined as the

total mass of gas contalned within the duct between the sections
x =0 and x =x, the definition of Am hecomes

Am=m(x,) - m(xy) ==E,) - m&,) (33)

Let TU(x) denote the internal (thermal) energy per uni® mass
of fluid, p(x) the static pressure, V(x) tho gas velocity,
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A(x) the cross-sectionsl area of the duct, each baken at the .sec-
tion x; and Q(x) +the heat (in mechanical«enorgy units) added
from walls or by combusticnt to a unit mass of the fluld during its
passage from X =0 o x = x. Then the first law of thermodynemics
says for steady flow that

2 ' (£s)
fm(2)(U+%V2>dm-fm(x2)(U.+%:v2>dm=fm2 .
m(il) . m(gl)

m(xy )

o E
_jm(xz) Q dm - f’szu-fl pA dx | (40)
m(x)) x2 .3

As A dx = (1/p) dm, vhere p(x) is the density of the gas, egua-
tion (40) beccmes

(£5) (£4)
fm 2 (U+32=v2-o,+p/p>d'm= " <U+%V2-Q+P/P>dm

m(xg) ~m(xy) (1)
4l

when the limits of integration are changed.

Provided that the integrand is continuous (which requirement
axcludes shock), the expression on the right-hand side of equa-
tlon (41) may be written, by the theorem of the mean for integrals:

[m(t;) - mlxJ) e(my*)

vhere f£(my*) indlcates the value of the irntegrand at some m = m*,
m(xy}<m*<m(1). The integral on the left-hand side ylelds a

- 8imilar result, with subscript 1 replaced by subscript 2, whence,
by virtue of eguation (39)

Fm*) = £(mp¥); m(x) < m* < m(¥;), m(xp) < mp* < m(fp)  (42)

lactually the heat liberated by combustion might be considercd as
part of internal energy; or the external surroundings might be
considered to include the fuel; or the first law might be genera-
lized to include heat sources. The treatment given here 1is con-

venlent buf must be understood to require some Justificatioh on
one of the bases mentioned. B
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As £4—>x,, gz—exz ; ‘this equation beccmes

fEu(xl)] = fEn(xz)] (43)
but x; end X, are arbitrary. Hente f 1is a constant, and
a 1
E(U-!-'Evz"Q'FP/p)_

or, since 4(U + p/p) = ¥, where H is the enthalpy per unit
megs

dQ = dH + Vav (44)
For a perfect gas, dH = cpd.‘l’ , whence the energy equation is finelly
dQ = cpdm + Vav (45)

Conservation of Mass

The congervation of mass, in the form useful here, states that
in steady flow the mass entering a closed surface during any time
interval At is equal to the mass leaving during the interval At,
Let the closed surface consist of the sections at arbitrary ¢ 1 and

Xo (Tig. 1) and the portions of the duct, between these sections and
let At be the time required for the mass m( El) - m(xl) to enter
the surface while mass m(f, ) - m(xz) flows out. The value of Xy
is arbitrary, whereas gz is Tixed by the conditions on the time

intervel., TUpon definition of t(x) as the time required for s
fluld particle to travel from origin x =0 %o x =x, At mnmay be
defined by ’

M= 5(g) - B(x) = t(Ep) - t(xp) (48)
The law of conservation of mass says that
£y €2
PA dx = pA dx - (47)
1 T

Upon change of variable, this equation beccmes
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6(E,) 8(¢,)
P %% it = pA %% at (48)
(xl) t(xz)

as before, by the theorem of the mean for Integrals and condi-
tion (46) the integrand must be constant, whence

d(pVA) = O (49)

Equation of Motion

The vector form of the second law of motion for continuous
media states that the integral of the density of surface forces
over a closed surface is equal to the integral of the density times
the particle derivative of the velocity over the volume enclosed by
the surface. (See, for example, reference 1S.) For the mass of
gas contained within the sections at x; and x, (fig. 1) and the
walls of the duct, the horizontal component of the equation of
motion becomes

p(xy) AGr) - B(xp) Alxy) + F""‘ R ax =f’2 o T pax  (50)
1 *

wvhere R(x) dx is the force exerted on the gas by the portion of
the duct between X and x + dx. For steady flow, the integral on
the right-hand side may be transformed as follows:

%2 2 *2

av av dx av
p E‘E Adx = s} -a__x- % A dx = pVA a—'x dx = pVA [V(Iz)-V(xl)]
X X X
1 1 1 (51)

It follows from equations (50) and (51) that the equation of motion
may be written in differential form as

paA + Adp + pVAAY = Rax (52)

Now Rdx may be resolved into two constituent parts, the
horizontal components of the tangential friction drag and of the
normal pressure reaction., If the half-angle of the duct is denocted
by $(x), +the wall surface by o(x), and the tangential frictlomal
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drag per unit area by T(x), from figure 2 it 1s clear that

—

Filgure 2
Rédx = -(t d0) cos P + (p @0) sin @
end that
d0 = d4/ein @
hence
R dx = -(r do) cos § + p dA (53)

It is possible to use equation (53) directly without further
analysis 1f the friction factor is related to T by the equation

T = fsz/Z.' In meny engineering treatments, however, f is defined
in terms of the "energy loss due to friction." In order to make
this concept of energy loss more precise and to make possible
derivation of a rigorous connection between T and energy loss
define F(x) as the work done by unit mass of the fluld against
friction in moving from the origin to position x. The work done

in moving the entire mass of fluld between xy
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and §; %o the region between xp end. 2z (fig. 3) will be com-
puted in terms of the original vaeriablés "t and g abd in terms

A Y \\-w-

LS SN S N

-

3 Figure 3

of the new variables F and m, If the two gquantities are equatod
and sultably transformed, a relation will be obtalned between d4F
and T4g,

Let xy, £, and x, be chosen arbitrarily, end let £, be
determined by the condltion that the total mass Am between x
and §, equal the total mass between x, and £,. Let x, be an
erbitrary point between x; end §,, end let x, be determined
by the condition that m(x,) ~ m(x;) = m(xp) - m(xp). In particular,
if X, = x;, then X =Xg; 1if x, =f;, then x =§,. Thus it
is sden that, as x, rung from x; to §,, X, rume from X %o

£ 5.

In order to determine the work done in terms of the variables
T and «, the procedure is to move thin sections from their original
positions, given in each case by x_,, +to their final positions 1xy,
to find the work done by each of them, and then to add up the work
done for all the sectloms. -
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Firet, divide the mass Am between =x; and {; into emaller
olements of mass Aym, Agm, . . . Am. (See fig. 3.) Let A0 .
be the wall surface corresponding to the element of mass Asm and
let the duct wall between the inltial and the final position of

Aym  be divided into elements of length A 48- For a given Asm it
follows from flgure 3 that

AiG = Zﬂri AiB
A4T = cos B4 A48

so that
-Aic = gi A.m

vhere gi3= 2nr;/p,; Ay cos $;. Each of the quantities py, T3, B,
and gy 18 to be evaluated a:t the proper point within Asx.

Finelly from figure 3 there exists on Aym a force AF(s J) ¥
to be overcome by the work against friction, equal to

T(BJ) Aic(sd) = T(SJ) 31(53) Aqm

where 1t i1s convenient to congider 7 and ¢ as functions of =&,
inasmuch ag frictional drag and the extension of an element of f:Lx:ed.
mags depends on the posltion of the element in the tubes,

For any olement of mass Asm then, an approximation (the
accuracy of which depends on the size of Aim) to the work done

by Asm in golng from section x, to section xy 1s

s(xb)
lim lim k
k—>w Aavi(sj) b8 = k—>w T(BJ) gi(sj) Am AJS
A JE';O B(xa) AJB->O J=

B e

= Aym (8) gi(s) ds

=)
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It follows that the corresponding, approximaticn to the work doneo
by the entire mass Am is
s[m(xbjj

7..(5) ,8;1(5) ds&Aim i

o1
us{_ﬁ(xai)]

1=l
.

and, as the approximsbtion hecomes mors é.nd more accurate as the
larges’b Ajm becomes smaller and smaller, the expression for the
work. done against friction when the entire mass between x; and El

is transported to the position between xp and E,z becomes

~
~

o | [ o[m0,) a(ty) ([ slm(xp)) ?

lim
I~=rom
A im—-"O 1= ;

The limitof tho double sum may be’ written as an iterated intepral
ag follows: o e

¢
/m( 1)fs[m(xb)] ro 48 dm (54) -
CJo(xy) [m(xg)]

It ie clear that the work dons against friction when the entire
mass is moved as previously described is cguel also ta

1im ' m(€,) F[m(xb)] m(€,) F[m(xb)]
A F—>0 Zz AF Asm = deds
dp—>0 1 m{xi) YFm(xy)) m{x; ) [m(xa\]

(55)

A

1(8) gi(s) dsy» Aqm = 7(s) g(s) ds dm
m

(x3) “elm(xa)]

o’

whence it follows, since the intervals for both integrations are
arbitrary, that S

v g- - 56 =
= = T8 . (56)

- [m(xgiz B
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and

_ 2%r * do)
LS T(pA cos ¢) (an)

then
(tdc) cos @ = cos® ¢ pA &F (57)

Beoause,.for the small angles usually under consideration, cog? ¢

e very nearly unity (for a half angle of 6°, cos® ¢ = 0.989), the
retention of this factor sxcept for particularly precise work would
not seem Justifiable. Hence equation (53) may be written

R dx = -pA 4F + p.dA (58)
The differential equation of motion is finally
~dp = oVAV + pdF . (59)

The connection between dF and the differential loss 1in
gtegnation pressure (-dpy) can, with the help of equations (14)
and (15), be expressed in the form

-dpy  ar ¥yNao

—_— = = 4

py RT [2 + (y-1)N]

(80)

Thue except for the limiting case of incompressible flew, (-dpg)

and dF cannot be used interchangeably in defining the friction
factor even for the adisbatic case where d46 = Q.
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APPENDIX B

THE 2 LANGUAGE
In the place of "N = Vz/yRT the equations may be formulsted
in terms of Z, defined through
Z = (VE[f2cp) /(T + V2 /2e,) - (81)
The numerstor is the so-called dynamic temperature, the denominator
is the total temperature. Z and N are related by
[(r-1)N )/[2+(7-1)N] (s2)

22./(7-1) (1-z) (63)

z

4

1

N

Thies replacement represents a one-to-ons transformation of N 1into
Z In the range 0 to infinity for N, O to 1 for 2.

In order to illustrate the form that some of the earlier equa-
tions take under this transformation, equations (14), (15), and (16)
are written in terms of Z,

az 2 )rl-z 7+1 ‘1
1-(7+iN 7 - N J
77T )
dp 2 s 7 142 7
—_ : (- Z 46 - — du - — Z da (es)
1- 51 Z
4T 2 “(1-2 ﬂ) —J
—_ = 5 a6 - 2 du - 2 da (e6)
T PN 2 ¥-1 .

1
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